
Selecting and Expressing Communicative Functions in a

SAIBA-Compliant Agent Framework

1 Human Media Interaction, University of Twente, The Netherlands
[m.bruijnes, d.k.j.heylen, m.theune,

j.b.vanwaterschoot]@utwente.nl
2 CNRS-ISIR, Pierre and Marie Curie University, France

[cafaro, pelachaud]@isir.upmc.fr

Abstract. In SAIBA-compliant agent systems, the Function Markup Language
(FML) is used to describe the agent’s communicative functions that are trans-
formed into utterances accompanied with appropriate non-verbal behaviours. In
the context of the ARIA Framework, we propose a template-based approach,
grounded in the DIT++ taxonomy, as an interface between the dialogue man-
ager (DM) and the non-verbal behaviour generation (NVBG) components of this
framework. Our approach enhances our current FML-APML implementation of
FML with the capability of receiving on-the-fly generated natural language and
socio-emotional parameters (e.g. emotional stance) for transforming the agent’s
intents in believable verbal and non-verbal behaviours in an adaptive manner.

Keywords: Dialogue management, communicative function, FML, multimodal
behaviour, SAIBA

1 Introduction

Generating natural multimodal behaviour for an embodied conversational agent re-
quires producing utterances accompanied with appropriate non-verbal behaviours and
the capability to ‘colour’ these behaviours to adapt to the social situation [2, 15]. In
a SAIBA system [7], an Intent Planner produces intents composed of communicative
functions (and the topic) that are translated into expressive multimodal behaviours by
a Behaviour Planner. This is typically the joint task of a Dialogue Manager (DM) on
the one hand (intent planner) and a non-verbal behaviour generation (NVBG) system
on the other (behaviour planner). The challenge is to dynamically create behaviour that
is believable and fits the social situation.

An author can manually craft a dialogue scenario to control the display of a believ-
able agent’s social behaviour. However, this is a rigid approach that requires authoring
of each utterance and, even when several variants for each utterance exist, it is likely
there will be not enough variability to accommodate all social situations. In a more
dynamic approach, it is difficult to retain control of the results, which might lead to un-
believable generated content. It is hard to automatically generate (non)verbal behaviour

73© Springer International Publishing AG 2017
J. Beskow et al. (Eds.): IVA 2017, LNAI 10498, pp. 7 -82, 2017.
DOI 10.1007/978-3-319-67401-8_8

3

Angelo Cafaro�2, Merijn Bruijnes�1, Jelte van Waterschoot1, Catherine
Pelachaud2, Mariët Theune1, and Dirk Heylen1

supporting, for instance, emphasis on words. For easy authoring, while escaping rigid-
ity of pre-scripted files, we propose re-usable scripts, templates, that offer flexibility in
the way their content is delivered [17].

In this paper, we propose a SAIBA-compliant interface between a DM and an
NVBG system that allows the DM to dynamically instantiate the communicative func-
tions that are sent to the NVBG. We follow a template-based approach that builds on
the DIT++ taxonomy of communicative functions [3]. DIT++ supports dynamic vari-
ability of produced content, both verbal and non-verbal behaviour, while ensuring a
certain degree of control over the resulting behaviours. The main challenge in this ap-
proach is defining templates that have appropriate placeholders where the system can
enter or modify variables to create appropriate behaviour. Additional challenges are the
automatic selection of these templates and setting the value of the variables.

The contribution of this paper is threefold: (1) We propose an enhancement to FML
through the definition of FML Templates that serve as an interface between a DM and a
SAIBA-compliant NVBG platform. (2) We describe the mechanism adopted by the DM
to fill the placeholders provided in the FML templates. (3) We provide insights into the
benefits of using a template-based FML representation within the SAIBA framework.

2 Related Work

The work presented in this paper is part of the Artificial Retrieval of Information As-
sistants – Virtual Agents with Linguistic Understanding, Social skills, and Personalised
Aspects (ARIA-VALUSPA) project3 in which we create agents that are capable of hold-
ing multimodal social interactions in challenging and unexpected situations. The demo
scenario is Alice in Wonderland where the agent portrays Alice. In this paper, we de-
scribe the interface between the DM and the NVBG system of the ARIA-VALUSPA
framework depicted in Figure 1 and described in Section 3.1. We have grounded our
work in two standards, respectively, for describing communicative functions (DIT++)
and for representing them (FML-APML).

The Dynamic Interpretation Theory (DIT++) taxonomy, an ISO standard [3], is
a comprehensive, application-independent system for classification and analysis of di-
alogue with information about the communicative acts that are performed by dialogue
segments (a turn can be a dialogue segment). DIT++ has been used before in the de-
sign of a DM module [6]. The FML-APML is an evolution of the Affective Presen-
tation Markup Language (APML) [13] and is used by the NVBG system component
in the ARIA framework described in Section 3.1. The original FML-APML tags en-
coded the communicative intentions of an agent following the categorization of Poggi
[16]. Contrary to the representation proposed by Cafaro et al. [4], the set of tags in the
FML-APML supports features regarding the timing and importance of communicative
functions. The timing is specified with attributes inspired by the BML recommenda-
tions [7] and makes possible absolute or relative timings of functions with symbolic
labels for referencing. Emotional states can be described and these tags also give the
possibility to specify an intensity (from 0 to 1).

3 https://aria-agent.eu

A. Cafaro et al.

The dialogue management component in our work extends Flipper [11], a DM based
on the principles from the TrindiKit DM as an information state based DM [8]. Other
DM systems have been proposed lately. Rich and Sidner proposed DISCO [17], a task-
based DM based on collaborative discourse theory. In addition to offering content-wise
placeholders such as DISCO, our approach also supports a parametric instantiation of
accompanying communicative functions (e.g. emotion and level of emphasis). Morbini
et al. have created FLoReS [14], a DM that facilitates the creation of structured dia-
logues with the use of domain experts. We use a similar approach with forward-looking
goals in the form of communicative functions, though our approach differs from FLo-
Res in the agent’s intent generation, where we update our information state in real-time
with topics of interest and emotional state of the user and insert these in behavioural
templates. OpenDial is a toolkit for developing spoken dialogue systems created by
Lison [10]. His main contribution was adding the possibility to learn probabilities for
the responsive behaviour of the agent, even with small amounts of data, and still make
it easy to author the dialogue models. The authoring of dialogues is similar to that of
dialogues created with our DM Component with high-level templates, with placeholder
and mapping between utterances and intents. The Virtual Human Toolkit uses question
answering algorithms to select the agent’s response. However, they do not utilize an
information state, or an agent mental state, to alter the responses of the agent [9]. Fi-
nally, Mairesse and Walker developed PERSONAGE [12], a parametrizable NLG tool
that produced text outputs varying along the extraversion personality dimension of the
Big 5 [5]. In PERSONAGE a broader set of parameters is employed compared to our
system, however the authors’ focus is language generation whereas we propose a richer
output that includes instances of speech acts (i.e. language) but is also supported by a
variety of socio-emotional communicative functions later transformed into multimodal
behaviour.

3 An FML-Template based Dialogue Manager

3.1 The ARIA Framework

The ARIA framework has an architecture composed of three major blocks of modules:
Input, Agent Core and Output, as shown in Figure 1. Each block itself consists of a
number of modules. The Input block is mainly responsible for collecting and process-
ing audio-visual data about the user. The Social Signal Interpretation framework (SSI)
[18] in the input block gathers multimodal audio-visual user data and interprets, for
instance, the user’s emotional state in terms of valence and arousal, and the text ut-
tered by the user. This data is then fed to the Agent Core which analyses it to decide
on the agent’s response behaviour. The main component of the Agent Core is the Dia-
logue Manager (DM), which is an evolution of Flipper [11]. Based on the input from
SSI, the Core block produces FML-APML scripts that serve as input for the Output
generation block. In the Output block, the NVBG component is responsible for ren-
dering the agent, displaying animated behaviour and playing synthesized speech using
the CereVoice Engine text-to-speech (TTS) tool developed by CereProc [1]. The three
blocks use ActiveMQ as a message broker for communication.

75Selecting and Expressing Communicative Functions

Fig. 1. Overview of the ARIA Framework architecture.

This paper focuses on the interface between the Agent Core and the Output gener-
ation block, also highlighted in Figure 1 by the dashed red square. More specifically,
we describe the working mechanism of our DM (Section 3.2) and the mechanism that
allows it to interface with the NVBG component (Sections 3.3 and 3.4)4.

3.2 FML-Templates

The DM decides when the agent needs to communicate with the user and what to say.
Expressing this intent is done via the FML Translator, which communicates with the
NVBG component in order to generate, in real-time, the appropriate verbal and non-
verbal behaviour. The DM provides the FML Translator two types of information: (1) an
FML Template, and (2) a set of parameters that depend on the selected template. These
parameters are retrieved from the information state to add variability in the behaviour
specified in the FML template. In this section we describe the set of FML Templates
that we have created, the available parameters in these templates, the process to choose
a template and the values for its parameters and the final transformation to FML-APML.

FML Templates are based on the DIT++ taxonomy and are categorized accordingly.
The DIT++ taxonomy describes dialogue segments in terms of communicative func-
tions. When the agent receives user input the communicative function of this input can
be used to formulate an appropriate response. A dialogue segment can have multiple
functions. We split up such segments into smaller units so that only one communicative
function remains per unit. For example, assuming that the user asks a question (e.g. a
DIT++ set question) as interpreted by the Intent Recognizer which is part of the Agent
Core (see Fig. 1), an agent’s response can indicate that it understands there was a ques-
tion (i.e. positive feedback function) and, at the same time, can be a reply to the question
(computed by the Intent Planner as an inform function as a response). For each of the

4 The code is provided at: https://github.com/ARIA-VALUSPA/ARIA-System.
Additionally, an example scenario is provided at: https://github.com/
ARIA-VALUSPA/ARIA-System/wiki/Documentation.

A. Cafaro et al.

relevant communicative functions contained within DIT++, we created an FML Tem-
plate with a subset of parameters (described in the following section). An overview of
the DIT++ communicative functions in our FML Templates is shown in Table 1.

In addition to the existing DIT++ communicative functions answer, agreement, and
disagreement (subfunctions of inform), we need additional inform functions in order to
fine-tune the way the agent provides information. DIT++ supports adding more specific
communicative functions [3], so we introduce two more inform subfunctions, elaborate
and explain, which are used to give more examples and an explanation of a topic.

Table 1. An overview of our FML-Templates categorized according to DIT++ taxonomy.

Class Goal Sub-classes

Information Transfer Obtain or provide information
Question: set | choice | prop | check
Inform: agreement | disagreement |

answer | elaborate | explain

Feedback
Provide or elicit information
about the processing of the pre-
vious utterance(s)

Auto: positive | negative
Allo: positive | negative
Elicitation

Interaction
Structure the dialogue (e.g. turn
or topic management)

Contact: check | indication
Time: stalling | pausing
Turn: take | accept | grab | keep |

assign | release
Topic: introduction | preclosing |

announceShift

Social Obligations
Social policies during the dia-
logue

Salutation: initial | return
Introduction: initial | return
Gratitude: initial | return
Apology: initial | return
Valediction: initial | return

FML Template Parameters. The DM can modify parameters in FML Templates to
‘colour’ the agent’s behaviour. The parameters are in the form of XML elements and
their attributes as shown in Table 2. The Element column indicates the name of an ele-
ment as it appears in the FML Template. The three last elements enhance FML-APML
with additional constructs supporting placeholders for adding variability as described in

Table 2. The parameters of our FML Templates are elements and changeable attribute values.

Element Attribute

emotion type, intensity, importance
emphasis level, importance
certainty type, intensity, importance
voice type
var type
alternative type, name
alt-option ref

77Selecting and Expressing Communicative Functions

this section. The Attribute column indicates an element’s attribute that has a selectable
or changeable value (i.e. by the DM). The attribute type of a <var> element can be:
sentence, topic, user, or agent. The type for <certainty> can be none, uncertain, or cer-
tain. The <alternative> elements have a type attribute that can be: static, dynamic, or
selectable. The name attribute is a string used to link multiple selectable alternative tags
by name. The <alt-option> elements can be children of selectable alternatives and their
ref attribute is used for choosing a specific one. When multiple selectable alternatives
have the same name (i.e. they are linked), the given alt-option is selected in all linked
selectable alternatives whereas the other alt-options are discarded (see the example in
the next section for more details). The attributes intensity, importance, and level are
float values ([0..1]).

Standard FML-APML tags. The <emotion> tag has a type, intensity and importance
attribute. This tag sets the emotion the agent should express and it can be combined
with other communicative functions. The <emphasis> tag, if it is present in a tem-
plate, emphasizes verbally and non-verbally a defined part of the agent’s speech. The
<certainty> tag allows the DM to specify whether a communicative function should
be expressed (via non-verbal behaviours) with certitude or incertitude. The <voice> tag
has originally been defined within the CereVoice Engine to synthesize speech with dif-
ferent emotional stances. It is now included in FML-APML and its attribute, named
type, can have four possible values supported by the CereVoice Engine (angry, happy,
calm, sad).

Additional tags. Our FML Templates contain additional tags augmenting FML-APML.
We defined these additional tags on top of the standard FML-APML ones to overcome
the limit of using pre-scripted FML-APML instances and to support more variability
in dialogue and behaviour generation phases. We created tags that are placeholders for
words and full sentences, and tags that are constructs for adding variability to the pre-
defined result (i.e. the FML script that is sent to the NVBG system).

A <var> is a placeholder for constituents. For instance a sentence, a topic, or the
name of the user or agent. One example use is self-referencing of the agent: “Hello, I
am <var type="agent">”.

An <alternative> is a placeholder that supports alternative texts or FML-c blocks
of elements that can be selected. Three alternative types exist: static, selectable and dy-
namic. A static alternative contains a list of child tags that include FML content. When
present, one of the alt-option children is randomly selected with a uniform distribution.
A static alternative allows the DM to fully delegate the generation of the FML to the
FML Translator. However, changes or additions to this construct need to be scripted
before runtime. An example of a static alternative tag is shown in listing 1.1.

< a l t e r n a t i v e i d ="alt1" t y p e ="static">
< a l t−o p t i o n >For <tm i d ="tm1" / > i n s t a n c e : < / a l t−o p t i o n >
< a l t−o p t i o n >For <tm i d ="tm1" / > e x a m p l e : < / a l t−o p t i o n >

< / a l t e r n a t i v e >

Listing 1.1. Example of a static alternative.

A. Cafaro et al.

With a selectable alternative it is possible to conditionally select one of the alt-options
that are available via the ref attribute, as opposed to randomly selecting one of them.
The Agent Core has full control over the resulting FML-APML sent to the NVBG by
choosing which alternative should be produced. Multiple chunks of selectable alterna-
tives can be linked together if they have the same name attribute. The result is that the
selected alt-option (via ref) is also selected for the other linked selectable alternatives.
In the following example, giving Bob as input value for the user name (i.e. var) the
“named” alt-option of the positive-feedback selectable alternative yields to “Yes Bob”
when chosen. The emphasis tag belonging to the named alt-option in the second alter-
native (i.e. alt2) is also selected as it belongs to a linked alternative, see listing 1.2.
A dynamic alternative receives as input a list of semicolon separated items (e.g. words)
of which one is randomly selected with a uniform distribution probability. This allows
the DM to change the possible variations at runtime, but it has the disadvantage of re-
quiring the DM to provide actual text content. For example, the dynamic alternative tag
shown below could take from the DM a list of items such as: “bike; car; foot” (see
listing 1.3).
< sp e e c h i d ="s1">
< a l t e r n a t i v e i d ="alt1" name="positive-feedback" t y p e ="selectable">

< a l t−o p t i o n r e f ="named">Yes <tm i d ="tm0" / >< v a r i d ="var1" t y p e ="user" / ><tm i d ="tm1
" / >< / a l t−o p t i o n >

< a l t−o p t i o n r e f ="no-named">Yes< / a l t−o p t i o n >
< / a l t e r n a t i v e >
< / s p e e c h >
< a l t e r n a t i v e i d ="alt2" name="positive-feedback" t y p e ="selectable">

< a l t−o p t i o n r e f ="named">< emphas i s i d ="emp1" s t a r t ="s1:tm0" l e v e l ="strong" end="
s1:tm1" i m p o r t a n c e ="1" / >< / a l t−o p t i o n >

< a l t−o p t i o n r e f ="no-named">< / a l t−o p t i o n >
< / a l t e r n a t i v e >

Listing 1.2. Example of a selectable alternative.

<tm i d ="tm0" / >
< a l t e r n a t i v e i d ="alt1" t y p e ="dynamic" / > .

<tm i d ="tm1" / >

Listing 1.3. Example of a dynamic-alternative.

Finally, <var> and <alternative> tags can be nested. It is possible to create nested
structures by including within any type of alternative: <var> elements or other <alter-

native> types (n.b. within one level of recursion though).

3.3 Dialogue Management as FML Template Selection

Selecting and modifying FML Templates is described as a pipeline. After a new ut-
terance has been detected by SSI, the Intent Recognizer computes the user’s commu-
nicative functions. More specifically, an NLP component extracts keywords (based on
nouns/verbs/adjectives) to determine the topic of the user’s utterance and the commu-
nicative functions according to DIT++. The result of this computation is also stored in
the agent’s mental model. Next, the Intent Planner in the Agent Core has internal pre-
condition rules that are activated when matching with the user’s communicative func-
tion and topic of interest. Each FML Template is coupled to a unique set of precondi-
tions and once those are activated, the corresponding FML Template is chosen.

79Selecting and Expressing Communicative Functions

Depending on the Template, the Intent Planner needs to select the appropriate val-
ues for the available parameters. Those are retrieved from the agent’s mental state. The
agent’s utterances are currently stored in an internal database and are constrained to
the Alice in Wonderland scenario. Additionally, the agent’s utterance can be augmented
with an emotional expression (e.g. a frown or a raise in pitch when angry). Our DM
supports both a static way of defining the agent’s emotion (e.g. always happy, sad) or a
more dynamic way (e.g. mirroring the user’s emotion, or taking the output of computa-
tional models of emotions).

Once all parameters have been retrieved, the FML Translator takes the FML Tem-
plate and the required parameters as input and generates a full FML-APML script that
is compliant with the SAIBA behaviour planner within the NVBG system.

3.4 FML Translator

The job of the FML Translator is to transform a given FML template and its input pa-
rameters into an FML-APML script that is processable by the NVBG system for gener-
ating synthesized speech and accompanying non-verbal behaviour. The FML Translator
algorithm takes the following steps to accomplish this transformation task:

1. Find selectable <alternative> elements and replace them with the selected alternative-
item’s content.

2. Find dynamic <alternative> elements, randomly choose an alternative from the list
of items given in input and replace it.

3. Find static <alternative> elements, randomly choose an alternative’s content and
discard the others in the final FML-APML script.

4. Find <var> elements and replace those according to the given DM input.
5. Find <voice> tags (for CereVoice) and replace the emotion attribute OR remove the

voice brackets if input is not given.
6. Find and replace values for FML attributes (e.g. emotion type and intensity).

Behaviour Generation. The NVBG system is a SAIBA-compliant platform that ex-
pects to receive communicative functions from an intent planner represented in FML.
The FML-APML implementation of FML is currently used. FML-APML input is trans-
formed to BML (i.e. behaviour) according to a Multimodal Behaviour Lexicon and
probabilistic rules. The lexicon can be seen as a dictionary in which an entry is a com-
municative function (described with category and type). For each entry (i.e. function),
a set of behaviours (involving facial expressions, gaze, gestures, etc. . .) to accomplish
the function is proposed along with several alternatives that are named behaviour sets.
Each behaviour set comes with a probability determining the likelihood of being chosen
among the others in the entry. A basic lexicon can have a discrete uniform distribution
associated to each behaviour set, for example, each alternative has an equal probability
of being chosen with respect to the other alternatives in the same entry. As a result, any
given set of communicative functions represented in FML-APML can be accomplished
in different ways.

A. Cafaro et al.

4 Conclusions and Future Work

We have created an interface that offers variability content-wise, but also at a functional
level thanks to the possibility of choosing, for example, the emotional expression and
emphasis. In general, basing the templates on a taxonomy of communicative functions
provides a solid background for the DM to work with. The templates do not only deal
with generated natural language, but also include a standard representation of commu-
nicative functions which makes transforming the given input into multimodal generated
verbal and non-verbal behaviour a simpler task for the NVBG system. In our ARIA
Framework, the agent combines basic NLP, social signal detection, and communicative
functions planning to optimally structure the dialogue with the user. The system is mod-
ular and can be extended (e.g. with emotion and natural language generation engines)
to achieve more flexibility and variability.

We have proposed a mixed approach of control over audio-visual results of gen-
erated multimodal behaviour while still leaving room for variability. It should be re-
marked that the more dynamically content has to be generated (e.g. using dynamic
alternatives) the more intelligent the decision-making of the DM needs to be. For in-
stance, automatically filling a dynamic alternative list with appropriate verbal content
requires natural language understanding: the agent needs to respond appropriately to
the content of the user’s utterance. Static alternatives offer the advantage of yielding
more controlled results by reducing the burden of decision-making in the DM and del-
egating it to the transformation phase (i.e. FML Translator). However, variability can
only be obtained with costly off-line authoring. Finally, selectable alternatives represent
a compromise between the two. It allows an author to prepare what can be said while
offering the DM the capability to select appropriate behaviour.

Authoring of a dialogue scenario is one of the main efforts when developing an
agent in most frameworks. By utilizing FML Templates, the author can reuse dialogue
features that occur often. In addition, as a dialogue scenario grows over time, the pool
from which to pick a template to reuse becomes larger.

Some limitations need to be addressed in future work. First, a sentence provided as
input clause is not divided in smaller segments of information. The DM should be able
to point to parts of a sentence with more accuracy. This would allow the agent to refer
to specific information from a segment of a sentence it has said. This is relevant, for
example, when the agent is interrupted and needs to determine whether the information
contained in a segment was understood. We plan to overcome this issue by adding a step
to the transformation process that takes into account the presence of special markers
within a sentence indicating specific portions to emphasize, and make more precise the
generated emphasis behaviour. Finally, authoring of templates, attributes, and values
can become complex with large dialogue scenarios. A GUI editor would benefit our
approach and the other SAIBA-compliant agent systems, and would make authoring
considerably easier. Developments towards such an editor are under way.

Acknowledgements

This work is supported by the European project H2020 ARIA-VALUSPA. We are grateful to
Alexandru Ghitulescu for his help in developing the FML Translator.

81Selecting and Expressing Communicative Functions

References

1. Aylett, M., Pidcock, C.: The CereVoice Characterful Speech Synthesiser SDK. In: Pelachaud,
C., Martin, J.C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) Intelligent Virtual
Agents, LNCS, vol. 4722, pp. 413–414. Springer (2007)

2. Bruijnes, M.: Believable suspect agents: response and interpersonal style selection for an
artificial suspect. Ph.D. thesis, University of Twente (2016), sIKS dissertation no. 2016-39

3. Bunt, H., Alexandersson, J., Choe, J.W., Fang, A.C., Hasida, K., Petukhova, V., Popescu-
Belis, A., Traum, D.R.: Iso 24617-2: A semantically-based standard for dialogue annotation.
In: LREC. pp. 430–437 (2012)

4. Cafaro, A., Vilhjálmsson, H., Bickmore, T., Heylen, D., Pelachaud, C.: Representing Com-
municative Functions in SAIBA with a Unified Function Markup Language. In: Bickmore,
T., Marsella, S., Sidner, C. (eds.) Intelligent Virtual Agents, Lecture Notes in Computer Sci-
ence, vol. 8637, pp. 81–94. Springer International Publishing (2014)

5. Goldberg, L.R.: An alternative “description of personality”: the big-five factor structure.
Journal of Personality and Social Psychology 59(6), 1216–1229 (1990)

6. Keizer, S., Bunt, H., Petukhova, V.: Multidimensional dialogue management. In: van den
Bosch, A., Bouma, G. (eds.) Interactive Multi-modal Question-Answering, pp. 57–86.
Springer (2011)

7. Kopp, S., Krenn, B., Marsella, S., Marshall, A.N., Pelachaud, C., Pirker, H., Thórisson, K.R.,
Vilhjálmsson, H.H.: Towards a common framework for multimodal generation: The behavior
markup language. In: Proceedings of the 6th international conference on Intelligent Virtual
Agents. pp. 205–217. IVA’06, Springer-Verlag, Berlin, Heidelberg (2006)

8. Larsson, S., Traum, D.R.: Information state and dialogue management in the TRINDI Dia-
logue Move Engine Toolkit. Natural Language Engineering 6(3&4), 323–340 (2000)

9. Leuski, A., Traum, D.: NPCEditor: Creating Virtual Human Dialogue Using Information
Retrieval Techniques. AI Magazine 32(2), 42–56 (Jul 2011)

10. Lison, P.: Structured probabilistic modelling for dialogue management. Ph.D. thesis, Univer-
sity of Oslo (2013)

11. ter Maat, M., Heylen, D.: Flipper: An Information State Component for Spoken Dialogue
Systems. In: International Workshop on Intelligent Virtual Agents. pp. 470–472 (2011)

12. Mairesse, F., Walker, M.: PERSONAGE: Personality Generation for Dialogue. In: Proceed-
ings of the 45th Annual Meeting of the Association of Computational Linguistics. vol. 45,
pp. 496–503. Association for Computational Linguistics (2007)

13. Mancini, M., Pelachaud, C.: The FML-APML language. In: Why Conversational Agents
do what they do. Workshop on Functional Representations for Generating Conversational
Agents Behavior at AAMAS (2008)

14. Morbini, F., DeVault, D., Sagae, K., Gerten, J., Nazarian, A., Traum, D.: FLoReS: A Forward
Looking, Reward Seeking, Dialogue Manager. In: Natural Interaction with Robots, Know-
bots and Smartphones, pp. 313–325. Springer (2014)

15. Ochs, M., Sabouret, N., Corruble, V.: Simulation of the dynamics of nonplayer characters’
emotions and social relations in games. IEEE Transactions on Computational Intelligence
and AI in Games 1(4), 281–297 (2009)

16. Poggi, I.: Mind, hands, face and body: A goal and belief view of multimodal communication.
Weidler Buchverlag Berlin (2007)

17. Rich, C., Sidner, C.L.: Using Collaborative Discourse Theory to Partially Automate Dialogue
Tree Authoring. In: Proceedings of the 12th International Conference on IVAs. pp. 327–340.
Springer-Verlag, Berlin, Heidelberg (2012)

18. Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., André, E.: The social signal in-
terpretation (SSI) framework: multimodal signal processing and recognition in real-time. In:
Proceedings of the 21st ACM International Conference on Multimedia. pp. 831–834 (2013)

A. Cafaro et al.

	8Selecting and Expressing Communicative Functions in aSAIBA-Compliant Agent Framework
	1 Introduction
	2 RelatedWork
	3 An FML-Template based Dialogue Manager
	3.1 The ARIA Framework
	3.2 FML-Templates
	3.3 Dialogue Management as FML Template Selection
	3.4 FML Translator

	4 Conclusions and Future Work
	Acknowledgements

	References

